Chaperonin-Inspired pH Protection by Mesoporous Silica SBA-15 on Myoglobin and Lysozyme.

نویسندگان

  • Michele M Lynch
  • Jichuan Liu
  • Michael Nigra
  • Marc-Olivier Coppens
چکیده

While enzymes are valuable tools in many fields of biotechnology, they are fragile and must be protected against denaturing conditions such as unfavorable solution pH. Within living organisms, chaperonins help enzymes fold into their native shape and protect them from damage. Inspired by this natural solution, mesoporous silica SBA-15 with different pore diameters is synthesized as a support material for immobilizing and protecting enzymes. In separate experiments, the model enzymes myoglobin and lysozyme are physically adsorbed to SBA-15 and exposed to a range of buffered pH conditions. The immobilized enzymes' biocatalytic activities are quantified and compared to the activities of nonimmobilized enzymes in the same solution conditions. It has been observed that myoglobin immobilized on SBA-15 is protected from acidic denaturation from pH 3.6 to 5.1, exhibiting relative activity of up to 350%. Immobilized lysozyme is protected from unfavorable conditions from pH 6.6 to 7.6, with relative activity of up to 200%. These results indicate that the protective effects conferred to enzymes immobilized by physical adsorption to SBA-15 are driven by the enzymes' electrostatic attraction to the material's surface. The pore diameter of SBA-15 affects the quality of protection given to immobilized enzymes, but the contribution of this effect at different pH values remains unclear.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining the Physical Adsorption Approach and the Covalent Attachment Method to Prepare a Bifunctional Bioreactor

Aminopropyl-functionalized SBA-15 mesoporous silica was used as a support to adsorb myoglobin. Then, in order to avoid the leakage of adsorbed myoglobin, lysozyme was covalently tethered to the internal and external surface of the mesoporous silica with glutaraldehyde as the coupling agent. The property of amino-functionalized mesoporous silica was characterized by N(2) adsorption-desorption an...

متن کامل

Dissolution of Mesoporous Silica Supports in Aqueous Solutions: Implications for Mesoporous Silica-based Water Treatment Processes.

Under pH 7 - 10 conditions, the mesoporous silica supports proposed for use in water treatment are relatively unstable. In batch experiments conducted in pH 7 solutions, the commonly used support SBA-15 dissolved quickly, releasing approximately 30 mg/L of dissolved silica after 2 hours. In column experiments, more than 45% of an initial mass of 0.25 g SBA-15 dissolved within 2 days when a pH 8...

متن کامل

Application of FFT Cyclic Voltammetry for Monitoring Removal of Mercury Ions from Aqueous Environment using New Adsorbent based Modified Mesoporous Silica (SBA–15)

As the electrochemical method, the Fast Fourier Transform (FFT) Stripping Cyclic Voltammetry detection method was designed for measurement and monitoring of adsorbed mercury ions by new modified adsorbent based on mesoporous silica as a new adsorbent. In this respect, SBA-15 as mesoporous silica and 1, 3, 5 Trithiane as effective modifier ligand were chosen, and the modification process was car...

متن کامل

A study on the catalytic activity of a new acidic ordered mesoporous silica (SBA-15)

SBA-15 is an interesting mesoporous silica material having highly ordered nanopores and a large surface area, which is widely employed as a catalyst. This mesoporous silica due to silanol groups is easily functionalized by various organic materials. A new acidic ordered functionalized mesoporous silica (SBA-15-Aminopropyl-Benzyl-SO3H) has been introduced as an efficient catalyst for ...

متن کامل

Alkyl surface modification of nanoporous silica SBA-15 by click chemistry to obtain triazole products

In this study, Santa Barbara Amorphous (SBA-15) mesoporous silica has been functionalized with aminopropyl groups that were converted to propargyl-bearing moieties through the reaction with propargyl bromide. The material then underwent an efficient Cu(I)-catalyzed azide alkyne click reaction with sodium azide in order to obtain the corresponding triazole products. The covalent modification of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 32 37  شماره 

صفحات  -

تاریخ انتشار 2016